In trapezium \( A B C D, A B \| D C \) and \( D C=2 A B . E F \| A B \), where \( E \) and \( F ...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=ZtxsXar803I
In trapezium \( A B C D, A B \| D C \) and \( D C=2 A B . E F \| A B \), where \( E \) and \( F \) lie on \( B C \) and \( A D \) respectively, such that \( \frac{B E}{E C}=\frac{4}{3} \). Diadonal \( D B \) intersects \( E F \) at \( G \). Prove that \( 7 E F=11 A B \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live