Inferring the 3D Standing Spine Posture from 2D Radiographs | AISC

Published on ● Video Link: https://www.youtube.com/watch?v=ceXSamYG6wk



Duration: 42:45
117 views
3


For slides and more information on the paper, visit https://ai.science/e/inferring-the-3-d-standing-spine-posture-from-2-d-radiographs--78i9pYJqGmiZseV9xzrf

Speaker: Amirhossein Bayat; Host: Akram Bayat

Motivation:
The treatment of degenerative spinal disorders requires an understanding of the individual spinal anatomy and curvature in 3D. An upright spinal pose (i.e. standing) under natural weight bearing is crucial for such bio-mechanical analysis. 3D volumetric imaging modalities (e.g. CT and MRI) are performed in patients lying down. On the other hand, radiographs are captured in an upright pose, but result in 2D projections. This work aims to integrate the two realms, i.e. it combines the upright spinal curvature from radiographs with the 3D vertebral shape from CT imaging for synthesizing an upright 3D model of spine, loaded naturally. Specifically, we propose a novel neural network architecture working vertebra-wise, termed TransVert, which takes orthogonal 2D radiographs and infers the spine's 3D posture. We validate our architecture on digitally reconstructed radiographs, achieving a 3D reconstruction Dice of 95.52%, indicating an almost perfect 2D-to-3D domain translation. Deploying our model on clinical radiographs, we successfully synthesize full-3D, upright, patient-specific spine models for the first time.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2020-10-20Design for Augmentation (not Automation) | AISC
2020-10-16Genomics with Deep Learning: A Concise Overview | AISC
2020-10-15Designing quantum computers with generative models | AISC
2020-10-15Explainable AI for Time Series - Literature Review | AISC
2020-10-15Towards a Critical Race Methodology in Algorithmic Fairness | AISC
2020-10-14An eye on AI in Healthcare | AISC
2020-10-13Some Salient Issues with Saliency Models | AISC
2020-10-13The Messy Side of AI Products | AISC
2020-10-09Human Aware AI: Reducing Transportation Energy of a City by Influencing Individual Behaviour
2020-10-08Policy Priority Inference: Simulations for Government Strategy | AISC
2020-10-07Inferring the 3D Standing Spine Posture from 2D Radiographs | AISC
2020-10-06Knowledge Extraction from Multimodal & Multilingual sources | AISC
2020-10-01Camera Depth of Field Manipulation for Pre- and Post-Image Capture | AISC
2020-09-30[MOREL] Unsupervised Video Object Segmentation for Deep Reinforcement Learning
2020-09-29Dealing with Bias and Fairness in Data Science Systems: A Practical Hands-on Tutorial | AISC
2020-09-29Overview: Machine Learning for Quantum Matter Research | AISC
2020-09-25Overview of Machine Learning for Knowledge Graphs | AISC
2020-09-24Integrating Physics into Machine Learning Models for Scientific Discovery | AISC
2020-09-24Applications of Blockchain to IoT Security | AISC
2020-09-24Human-Technology Systems for Intelligent Civil Infrastructure Operation and Maintenance | AISC
2020-09-23The AI Design Sprint -- setting your AI Initiative up for delivery success! | AISC