Integrating Physics into Machine Learning Models for Scientific Discovery | AISC

Published on ● Video Link: https://www.youtube.com/watch?v=aLEq7pp_vCo



Duration: 55:14
813 views
14


For slides and more information on the paper, visit https://ai.science/e/integrating-physics-into-machine-learning-models-for-scientific-discovery--5mx0pXzfOPH5JzxVTVGk

Speaker: Sajeda Mokbel; Host: Amir Feizpour

Motivation:
Machine learning has been long adapted in many areas of industry such as finance, e-commerce, and marketing. Recently, it is becoming increasingly popular in the physical sciences as well. In particle physics, CNNs are used to help identify rare neutrino events in detectors. In fluid mechanics, neural networks can be used to reduce error and accelerate convergence time when simulating flow fields. However, when it comes to these physical processes, introducing traditional machine learning algorithms to analyze the data will not suffice. While state-of-the-art machine learning models are sometimes able to outperform physics-based models when given a large amount of training data, they can produce results that are physically inconsistent due to their simplified representations of the processes. This talk will dive into current research aimed to improve the modelling of physical processes using machine learning. Different “physics-guided” models will be explored for different neural networks, namely recurrent NNs, convolutional NNs, and feed-forward NNs.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2020-10-13The Messy Side of AI Products | AISC
2020-10-09Human Aware AI: Reducing Transportation Energy of a City by Influencing Individual Behaviour
2020-10-08Policy Priority Inference: Simulations for Government Strategy | AISC
2020-10-07Inferring the 3D Standing Spine Posture from 2D Radiographs | AISC
2020-10-06Knowledge Extraction from Multimodal & Multilingual sources | AISC
2020-10-01Camera Depth of Field Manipulation for Pre- and Post-Image Capture | AISC
2020-09-30[MOREL] Unsupervised Video Object Segmentation for Deep Reinforcement Learning
2020-09-29Dealing with Bias and Fairness in Data Science Systems: A Practical Hands-on Tutorial | AISC
2020-09-29Overview: Machine Learning for Quantum Matter Research | AISC
2020-09-25Overview of Machine Learning for Knowledge Graphs | AISC
2020-09-24Integrating Physics into Machine Learning Models for Scientific Discovery | AISC
2020-09-24Applications of Blockchain to IoT Security | AISC
2020-09-24Human-Technology Systems for Intelligent Civil Infrastructure Operation and Maintenance | AISC
2020-09-23The AI Design Sprint -- setting your AI Initiative up for delivery success! | AISC
2020-09-23explainX - Explainable AI for model developers | AISC
2020-09-22Statistical Issues in Agent-Based Models | AISC
2020-09-22Layerwise Learning for Quantum Neural Networks | AISC
2020-09-17Survival regression with AFT model in XGBoost | AISC
2020-09-17Detecting Off-Topic Spoken Response with NLP | AISC
2020-09-16Defining your AI Value Model for Product Success (and Profit) | AISC
2020-09-15Real-World Quantum Communication: One Module at a Time | AISC