\[ \int \frac{d x}{\left(\sqrt{1+x^{2}}-x\right)^{n}}(n \neq \pm 1)...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=WYd5a4YxkgM
\[
\int \frac{d x}{\left(\sqrt{1+x^{2}}-x\right)^{n}}(n \neq \pm 1)=\frac{1}{2}\left(\frac{z^{n+1}}{n+1}+\frac{z^{n-1}}{n-1}\right)+C
\]
\( \mathrm{P}^{11:} \)
W.
where:
(1) \( z=x-\sqrt{1+x^{2}} \)
(2) \( z=\sqrt{1+x^{2}}-x \)
(3) \( z=x+\sqrt{1+x^{2}} \)
(4) \( z=x-\sqrt{1-x^{2}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw