\( \int \frac{x^{3} d x}{\sqrt{1+x^{2}}} \) is equal to (A) \( \frac{1}{3} \sqrt{1+x^{2}}\left(2...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=GqR9V2Iviiw
\( \int \frac{x^{3} d x}{\sqrt{1+x^{2}}} \) is equal to
(A) \( \frac{1}{3} \sqrt{1+x^{2}}\left(2+x^{2}\right)+C \)
(B) \( \frac{1}{3} \sqrt{1+x^{2}}\left(x^{2}-1\right)+C \)
(C) \( \frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+C \)
(D) \( \frac{1}{3} \sqrt{1+x^{2}}\left(x^{2}-2\right)+C \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live