The value of the integral \( \int \frac{1+x^{2}}{1+x^{4}} d x \) is equal to (A) \( \tan ^{-1} x...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=KLS2pd-hTj4
The value of the integral \( \int \frac{1+x^{2}}{1+x^{4}} d x \) is equal to
(A) \( \tan ^{-1} x^{2}+C \)
(B) \( \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x^{2}-1}{\sqrt{2} x}\right) \)
(C) \( \frac{1}{2 \sqrt{2}} \log \left(\frac{x^{2}+\sqrt{2} x+1}{x^{2}-\sqrt{2} x+1}\right)+C \)
(D) none of these
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live