Keisuke Fujii: Threshold theorem for quantum supremacy

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=wBa0wdtkSZk



Duration: 27:38
660 views
5


Demonstrating quantum supremacy, a complexity-guaranteed quantum advantage over the best classical algorithms by using less universal quantum devices, is an important near-term milestone for quantum information processing. Here we develop a threshold theorem for quantum supremacy with noisy quantum circuits in the pre-threshold region, where quantum error correction does not work directly. This allows us to show that the output sampled from the noisy quantum circuits (without postselection) cannot be simulated efficiently by classical computers based on a stable complexity theoretical conjecture, i.e., non-collapse of the polynomial hierarchy. By applying this to fault-tolerant quantum computation with the surface codes, we obtain the threshold value 3.20\% for quantum supremacy, which is much higher than the standard threshold 0.75% with the same circuit-level noise model.




Other Videos By Microsoft Research


2017-01-31Sam Roberts: Symmetry protected topological order at nonzero temperature
2017-01-31Anthony Leverrier: SU(p,q) coherent states and Gaussian de Finetti theorems
2017-01-31Michael Kastoryano: Finite correlation length implies efficient preparation quantum thermal states
2017-01-31Xin Wang: Semidefinite programming strong converse bounds for quantum channel capacities
2017-01-31Li Gao: Capacity estimates for TRO channels
2017-01-31Anna Vershynina: Geometric inequalities and contractivity of bosonic semigroups
2017-01-31Rotem Arnon-Friedman: Entropy accumulation in device-independent protocols
2017-01-31Giacomo De Palma: Gaussian optimizers in quantum information
2017-01-31Sergey Bravyi: Improved classical simulation of quantum circuits dominated by Clifford gates
2017-01-31William Slofstra:Tsirelson’s problem & an embedding theorem for groups arising from non-local games
2017-01-31Keisuke Fujii: Threshold theorem for quantum supremacy
2017-01-31Kai-Min Chung: General randomness amplification with non-signaling security
2017-01-31Anand Natarajan: Robust self-testing of many qubit states
2017-01-31Andras Gilyen: On preparing ground states of gapped Hamiltonians
2017-01-31David Gosset: Complexity of quantum impurity problems
2017-01-31Thomas Vidick: Rigorous RG algorithms and area laws for low energy eigenstates in 1D
2017-01-31Giulio Chiribella: Optimal compression for identically prepared qubit states
2017-01-31James Lee: Spectrahedral lifts and quantum learning
2017-01-31Optimal Hamiltonian simulation by quantum signal processing
2017-01-31Shalev Ben-David: Sculpting quantum speedups
2017-01-31David Sutter: Multivariate trace inequalities



Tags:
microsoft research