David Sutter: Multivariate trace inequalities

Subscribers:
351,000
Published on ● Video Link: https://www.youtube.com/watch?v=Vcp4RaD3aD8



Duration: 36:45
538 views
7


We prove several trace inequalities that extend the Golden-Thompson and the Araki-Lieb-Thirring inequality to arbitrarily many matrices. In particular, we strengthen Lieb's triple matrix inequality. As an example application of our four-matrix extension of the Golden-Thompson inequality, we prove remainder terms for the monotonicity of the quantum relative entropy and strong subadditivity of the von Neumann entropy in terms of recoverability. We find the first explicit remainder terms that are tight in the commutative case. Our proofs rely on complex interpolation theory as well as asymptotic spectral pinching, providing a transparent approach to treat generic multivariate trace inequalities.




Other Videos By Microsoft Research


2017-01-31Keisuke Fujii: Threshold theorem for quantum supremacy
2017-01-31Kai-Min Chung: General randomness amplification with non-signaling security
2017-01-31Anand Natarajan: Robust self-testing of many qubit states
2017-01-31Andras Gilyen: On preparing ground states of gapped Hamiltonians
2017-01-31David Gosset: Complexity of quantum impurity problems
2017-01-31Thomas Vidick: Rigorous RG algorithms and area laws for low energy eigenstates in 1D
2017-01-31Giulio Chiribella: Optimal compression for identically prepared qubit states
2017-01-31James Lee: Spectrahedral lifts and quantum learning
2017-01-31Optimal Hamiltonian simulation by quantum signal processing
2017-01-31Shalev Ben-David: Sculpting quantum speedups
2017-01-31David Sutter: Multivariate trace inequalities
2017-01-31Mischa Woods: Applications of recoverability in quantum information
2017-01-31Anand Natarajan: Limitations of semidefinite programs for separable states and entangled games
2017-01-31A parallel repetition theorem for all entangled games
2017-01-31Guillaume Dauphinais: Fault-tolerant error correction for non-abelian anyons
2017-01-31Dominic Williamson: Anyons and matrix product operator algebras
2017-01-31Jonathan Oppenheim: From quantum thermodynamical identities to a second law equality
2017-01-31Operator scaling and applications
2017-01-31Xin Wang: Asymptotic entanglement manipulation under PPT operations: new SDP bounds&irreversibility
2017-01-31Srinivasan Arunachalam: Optimal quantum sample complexity of learning algorithms
2017-01-311. Catalytic Decoupling 2. Deconstruction and conditional erasure of quantum correlations



Tags:
microsoft research