Let \( A \) and \( B \) are two matrices such that \( A B=B A \), t...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=_uNacylaGYQ
Let \( A \) and \( B \) are two matrices such that \( A B=B A \), then for every \( n \in \mathbf{N} \),
(a) \( A^{n} B=B A^{n} \)
(b) \( (A B)^{n}=A^{n} B^{n} \)
(c) \( (A+B)^{n}={ }^{n} C_{0} A^{n}+{ }^{n} C_{1} A^{n-1} B+ \)
\[
{ }^{n} C_{2} A^{n-2} B+\ldots+{ }^{n} C_{n} B^{n} .
\]
(d) \( A^{2 n}-B^{2 n}=\left(A^{n}-B^{n}\right)\left(A^{n}+B^{n}\right) \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw