Let \(A\) be a \(2 \times 2\) matrix with real entries such that \(A^{\prime}=\alpha A+I\), wher....
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=SkzRXYOj7Q8
Let \(A\) be a \(2 \times 2\) matrix with real entries such that \(A^{\prime}=\alpha A+I\), where \(\alpha \in R -\{-1,1\}\). If \(\operatorname{det}\left(A^2-A\right)=4\), then the sum of all possible values of \(\alpha\) is equal to 📲PW App Link - https://bit.ly/YTAI_PWAP 🌐PW Website - https://www.pw.live