Let \( A=\{x \in R: x \geq 1\} \). The inverse of the function \( f: A \rightarrow A \) given by....
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=Vt3lzPswGFo
Let \( A=\{x \in R: x \geq 1\} \). The inverse of the function
\( \mathrm{P} \)
\( f: A \rightarrow A \) given by \( f(x)=2^{x(x-1)} \), is
W
(1) \( \left(\frac{1}{2}\right)^{x(x-1)} \)
(2) \( \frac{1}{2}\left\{1+\sqrt{1+4 \log _{2} x}\right\} \)
(3) \( \frac{1}{2}\left\{1-\sqrt{1+4 \log _{2} x}\right\} \)
(4) not defined
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live