Let \( f \) be a positive function. If \( I_{1}=\int_{1-k}^{k} x f[...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=QOl2vBdXEOg
Let \( f \) be a positive function.
If \( I_{1}=\int_{1-k}^{k} x f[x(1-x)] d x \) and
\( \mathrm{P} \) \( I_{2}=\int_{1-k}^{k} f[x(1-x)] d x \), where \( 2 k-10 \).
VW
Then, \( \frac{I_{1}}{I_{2}} \) is
(1997C, 2M)
(a) 2
(b) \( k \)
(c) \( 1 / 2 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw