Let ' \( f \) ' be a quadratic polynomial such that \( f(-1-x)=f(-1+x) \forall x \in R \) and \( (f(1)-5)^{2}+(f(-1)-1)^{2}=f^{\prime}(-1) \)
P
Column I Column II
W.
\( \begin{array}{ll}\text { (a) The value of }\left[\sin ^{-1}(f(x))\right] \text { whenever defined, is equal to } & \text { (p) } 0\end{array} \)
(b) The value of \( [1+\operatorname{sgn}(f(x))] \) is equal to
(q) 1
(c) The value of \( \left[\tan ^{-1}\left(\frac{1}{f(x)}\right)\right] \) is equal to
(r) 2
(d) The value of \( \left[2 \cot ^{-1}\left(\frac{1}{2^{f(x)}}\right)\right] \) is equal to
(s) 3
[Note : \( [y] \) denotes greatest integer less than or equal to \( y \). ]
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live