Let, \( f(x)=\left[\begin{array}{ll}\frac{8}{\pi} \tan ^{-1}(-|x|+3...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=sSY-RNM0w1s
Let, \( f(x)=\left[\begin{array}{ll}\frac{8}{\pi} \tan ^{-1}(-|x|+3), & |x|2 \\ {\left[\frac{3 x^{2}-|x|+3}{x^{2}+1}\right],} & |x| \leq 2\end{array}\right. \)
\( \mathrm{P} \)
Number of integers in the range of \( f(x) \) is where [] denotes greatest integer function.
(a) 5
(b) 6
(c) 7
(d) more than 7
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw