Let \( f \) be any function defined on \( R \) and let it satisfy \...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=hffPOfIOxpU
Let \( f \) be any function defined on \( R \) and let it satisfy
\( \mathrm{P} \) the condition: \( |f(x)-f(y)| \leq\left|(x-y)^{2}\right|, \forall(x, y) \in R \)
W if \( f(0)=1 \), then:
(A) \( f(x)0, \forall x \in R \)
(B) \( f(x) \) can take any value in \( R \)
(C) \( f(x)=0, \forall x \in R \)
(D) \( f(x)0, \forall x \in R \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw