Let \( y=y(x) \) be a function of \( x \) satisfying P \( y \sqrt{1...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=XccPPK3Gis8
Let \( y=y(x) \) be a function of \( x \) satisfying
P \( y \sqrt{1-x^{2}}=k-x \sqrt{1-y^{2}} \) where \( k \) is constant and
W \( y\left(\frac{1}{2}\right)=-\frac{1}{4} \). Then \( \frac{d y}{d x} \) at \( x=\frac{1}{2} \), is equal to:
(A) \( \frac{5}{\sqrt{7}} \)
(B) \( -\frac{5}{\sqrt{4}} \)
(C) \( -\frac{5}{\sqrt{2}} \)
(D) \( \frac{-\sqrt{5}}{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw