Let \( f: R \rightarrow R \) be defined as \( f(x)=\int_{0}^{x}\lef...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=_GllYNC2mkc
Let \( f: R \rightarrow R \) be defined as \( f(x)=\int_{0}^{x}\left(\sin ^{2} t+1\right) d t \) and \( g \) is the inverse function of \( f \),
\( \mathrm{P} \) then \( g^{\prime}\left(\frac{3 \pi}{4}\right) \) is equal to :
W
(a) \( \frac{4}{3 \pi} \)
(b) \( \frac{4 \pi}{3} \)
(c) \( \frac{1}{2} \)
(d) 1
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw