Let \( P_{k} \) be a point in \( x y \) plane whose \( x \) coordin...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=mk_0nCeFwO4
Let \( P_{k} \) be a point in \( x y \) plane whose \( x \) coordinate is \( 1+\frac{k}{n}(k=1,2,3, \ldots \ldots ., n) \) on the
P curve \( y=\ln x \). If A is \( (1,0) \), then \( \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(A P_{k}\right)^{2} \) equals :
W
(a) \( \frac{1}{3}+2 \ln ^{2} 2 \)
(b) \( \frac{1}{3}+2 \ln ^{2}\left(\frac{2}{e}\right) \)
(c) \( \frac{1}{3}+\ln ^{2}\left(\frac{2}{e}\right) \)
(d) \( \frac{1}{3}+2 \ln \left(\frac{2}{e}\right) \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw