Given that \( U_{n}=\{x(1-x)\}^{n} \) and \( n \geq 2 \) and \( \fr...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=1AdMYSLk9Sk
Given that \( U_{n}=\{x(1-x)\}^{n} \) and \( n \geq 2 \) and \( \frac{d^{2} U_{n}}{d x^{2}}=n(n-1) U_{n-2}-2 n(2 n-1) U_{n-1} \),
\( \mathrm{P} \)
W further if \( V_{n}=\int_{0}^{1} e^{x} \cdot U_{n} d x \), then for \( n \geq 2 \), we have \( V_{n}+K_{1} n(2 n-1) . V_{n-1}+K_{2} n(n-1) \) \( V_{n-2}=0 \). Find \( \left(K_{1}+K_{2}\right) \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw