Let \( f: R \rightarrow R, f(x)=\left\{\begin{array}{c}|x-[x]|,[x] \text { is odd } \\ |x-[x+1]|...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=NI9jCszT2Ww
Let \( f: R \rightarrow R, f(x)=\left\{\begin{array}{c}|x-[x]|,[x] \text { is odd } \\ |x-[x+1]|,[x] \text { is even }\end{array}\right. \) where [.] denotes greatest integer
\( P \) function, then \( \int_{-2}^{4} f(x) d x \) is equal to
(A) \( 5 / 2 \)
(B) \( 3 / 2 \)
(C) 5
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live