Let \( f:(0, \infty) \rightarrow R \) be a continuous function such...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=PFU3tCg4lW8
Let \( f:(0, \infty) \rightarrow R \) be a continuous function such that
\( \mathrm{P}^{18:} \) \( f(x)=\int_{0}^{x} t f(t) d t \). If \( F\left(x^{2}\right)=x^{4}+x^{5} \), then \( \sum_{r=1}^{12} f\left(r^{2}\right) \)
W is equal to
(1) 216
(2) 219
(3) 222
(4) 225
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw