If \( F(x)=\int_{1}^{x} f(t) d t \), where \( f(t)=\int_{1}^{t^{2}}...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=EeDr8ish0YM
If \( F(x)=\int_{1}^{x} f(t) d t \), where \( f(t)=\int_{1}^{t^{2}} \frac{\sqrt{1+u^{4}}}{u} d u \),
\( \mathrm{P}^{18:} \)
W then the value of \( F^{\prime \prime} \) (2) equals
(1) \( \frac{7}{4 \sqrt{17}} \)
(2) \( \frac{15}{\sqrt{17}} \)
\( (3)^{257} \sqrt{257} \)
(4) \( \frac{15 \sqrt{17}}{68} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw