Let \( g(x)=f(x)-1 \). If \( f(x)+f(1-x)=2 \forall x \in R \), then \( g(x) \) is symmetrical ab...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=LjNRDGLaU2g
Let \( g(x)=f(x)-1 \). If \( f(x)+f(1-x)=2 \forall x \in R \), then \( g(x) \) is symmetrical about
(A) the origin
(B) the line \( x=\frac{1}{2} \)
(C) the point \( (1,0) \)
(D) the point \( \left(\frac{1}{2}, 0\right) \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live