Let \( g(x)=\log f(x) \), where \( f(x) \) is twice differentiable positive function on \( (0, \....
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=t-RM8qbjnmI
Let \( g(x)=\log f(x) \), where \( f(x) \) is twice differentiable
P
positive function on \( (0, \infty) \) such that \( f(x+1)=x f(x) \).
W
Then, for \( N=1,2,3, \ldots g^{\prime \prime}\left(N+\frac{1}{2}\right)-g^{\prime \prime}\left(\frac{1}{2}\right)= \)
(1) \( -4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots+\frac{1}{(2 N-1)^{2}}\right\} \)
(2) \( 4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots+\frac{1}{(2 N-1)^{2}}\right\} \)
(3) \( -4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots+\frac{1}{(2 N+1)^{2}}\right\} \)
(4) \( 4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots+\frac{1}{(2 N+1)^{2}}\right\} \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live