Let \(k\) and \(m\) be positive real numbers such that the function \(f(x)=\left\{\begin{array}{.... VIDEO
Let \(k\) and \(m\) be positive real numbers such that the function \(f(x)=\left\{\begin{array}{cc}3 x^2+k \sqrt{x+1}, & 0<x<1 \\ m x^2+k^2, & x \geq 1\end{array}\right.\) differentiable for all \(x>0\). Then \(\frac{8 f^{\prime}(8)}{f^{\prime}\left(\frac{1}{8}\right)}\) is equal to π²PW App Link - https://bit.ly/YTAI_PWAP πPW Website - https://www.pw.live
Other Videos By PW Solutions 2024-07-29 The value of the definite integral ∫π/245π/24dx1+tan2x3.... 2024-07-29 ∫05cosπx-x2dx, where [t] denotes greatest integer less than or equal to t, is equal .... 2024-07-29 Let \(f:(0,1) \rightarrow R\) be the functions defined as \(f(x)=\sqrt{n}\) if \(x \in\left[\fra.... 2024-07-29 The value of the integral ∫-π/2π/2dx1+exsin6x+cos6x is equal to .... 2024-07-29 The value of ∫0πecosxsinx1+cos2xecosx+e-cosxdx is equal to:.... 2024-07-29 The greatest integer less than or equal to \(\int_1^2 \log _2\left(x^3+1\right) d x+\int_1^{\log.... 2024-07-29 For positive integer \(n\), define\(f(n)=n+\frac{16+5 n-3 n^2}{4 n+3 n^2}+\frac{32+n-3 n^2}{8 n+.... 2024-07-29 If the function \(f(x)=\frac{\cos (\sin x)-\cos x}{x^4}\) is continuous at each point in its dom.... 2024-07-29 Let \(f(x)=\left[x^2-x\right]+|-x+[x]|\), where \(x \in R\) and \([t]\) denotes the greatest int.... 2024-07-29 Let \(f:(-2,2) \rightarrow R\) be defined by\[f(x)=\left\{\begin{array}{cc}x[x] & ,-2<x&l.... 2024-07-29 Let \(k\) and \(m\) be positive real numbers such that the function \(f(x)=\left\{\begin{array}{.... 2024-07-29 limn→∞212-213212-215β―β―212-212n+1is equal to.... 2024-07-29 Let \(f\) and \(g\) be two functions defined by\[f(x)=\left\{\begin{array}{cc}x+1, & x<0 .... 2024-07-29 \(\text { If } y(x)=x^x, x>0 \text {, then } y^{\prime \prime}(2)-2 y^{\prime}(2) \text { is .... 2024-07-29 If \(x=2 \sin \theta-\sin 2 \theta\) and \(y=2 \cos \theta-\cos 2 \theta, \theta \in[0,2 \pi]\),.... 2024-07-29 Let \(f\) be a twice differentiable function defined on \(R\) such that \(f(0)=1, f^{\prime}(0)=.... 2024-07-29 Let \(f(x)=\left[2 x^2+1\right]\) and \(g(x)=\left\{\begin{array}{ll}2 x-3 & , x<0 \\ 2 x.... 2024-07-29 Let \(f\) be any continuous function on \([0,2]\) and twice differentiable on \((0,2)\). If \(f(.... 2024-07-29 Let \(f(x)=\sum_{k 1}^{10} k x^k, x \in R\). If \(2 f(2)+f^{\prime}(2)=119(2)^{ n }+1\) then \(n.... 2024-07-29 A function \(f\) is defined on \([-3,3]\) as \(f(x)=\) \(\left\{\begin{array}{cc}\min \left\{|x|.... 2024-07-29 The function \(f: R \rightarrow R\) defined by \(f(x)=\lim _{x \rightarrow \infty} \frac{\cos (2....