Let \( \mathrm{E} \) and \( \mathrm{F} \) be two independent events. Then, the
\( \mathrm{P} \)
W probability that both \( E \) and \( F \) happens is \( \frac{1}{12} \) and the probability that neither E nor \( F \) happens is \( \frac{1}{2} \) Then,
(1) \( \mathrm{P}(\mathrm{E})=1 / 3, \mathrm{P}(\mathrm{F})=1 / 4 \)
(2) \( \quad \mathrm{P}(\mathrm{E})=1 / 2, \mathrm{P}(\mathrm{F})=1 / 6 \)
(3) \( \quad \mathrm{P}(\mathrm{E})=1 / 6, \mathrm{P}(\mathrm{F})=1 / 2 \)
(4) \( \mathrm{P}(\mathrm{E})=1 / 4, \mathrm{P}(\mathrm{F})=1 / 3 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live