Let \( \mathrm{f} \) defined on \( [0,1] \) be a twice differentiab...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=Zq3XZGSO1ww
Let \( \mathrm{f} \) defined on \( [0,1] \) be a twice differentiable function such that, \( \left|\mathrm{f}^{\prime \prime}(\mathrm{x})\right| \leq 1 \) for all \( \mathrm{x} \in[0,1] \) If \( \mathrm{f}(0)=\mathrm{f}(1) \), then show that, \( \left|\mathrm{f}^{\prime}(\mathrm{x})\right|1 \) for all \( x \in[0,1] \)
\( \mathrm{P} \)
W
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/