Let \( \mathrm{M} \) be a \( 3 \times 3 \) invertible matrix with real entries and let I denote ...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=zNDk7LOzJPo
Let \( \mathrm{M} \) be a \( 3 \times 3 \) invertible matrix with real entries and let I denote the \( 3 \times 3 \) identity matrix. If \( \mathrm{M}^{-1}= \) adj (adj M), then which of the following statement is/are ALWAYS TRUE?
(A) \( \mathrm{M}=\mathrm{I} \)
(C) \( M^{2}=I \)
(B) det \( \mathrm{M}=1 \)
(D) \( (\operatorname{adj} M)^{2}=I \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live