Let \( \omega \) be a complex number such that \( 2 \omega+1=\mathr...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=HBhdONZ5HlA
Let \( \omega \) be a complex number such that \( 2 \omega+1=\mathrm{z} \) where \( \mathrm{z}=\sqrt{-3} \). If \( \left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{array}\right|=3 \mathrm{k} \), then \( \mathrm{k} \)
\( \mathrm{P} \) is equal to
(1) \( -\mathrm{z} \)
(2) z
(3) \( -1 \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw