Let \( \overrightarrow{\mathrm{A}}=\hat{\mathrm{i}} A \cos \theta+\hat{\mathrm{j}} A \sin \theta...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=AS5fl8POKbs
Let \( \overrightarrow{\mathrm{A}}=\hat{\mathrm{i}} A \cos \theta+\hat{\mathrm{j}} A \sin \theta \), be any vector. Another
vector \( \vec{B} \) which is normal to \( \vec{A} \) is :
(1) \( \hat{\mathrm{i} B} \cos \theta+\hat{\mathrm{j} B} \sin \theta \)
(2) \( \hat{\mathrm{i}} \mathrm{B} \sin \theta+\hat{\mathrm{j}} \mathrm{B} \cos \theta \)
(3) \( \hat{\mathrm{i}} \mathrm{B} \sin \theta-\hat{\mathrm{j}} \mathrm{B} \cos \theta \)
(4) \( \hat{\mathrm{i}} \mathrm{A} \cos \theta-\hat{\mathrm{j}} \mathrm{A} \sin \theta \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live