Let \( \overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}} \) and \( \overrightarrow{\mathrm{w}} \) be vectors in three dimensional
\( \mathrm{P} \) space, where \( \vec{u} \) and \( \vec{v} \) are unit vectors which are not
W perpendicular to each other and \( \overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{W}}=1, \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{W}}=1 \), \( \overrightarrow{\mathrm{W}} . \overrightarrow{\mathrm{W}}=4 \). If the volume of the parallelepiped, whose adjacent sides are represented by the vectors \( \vec{u} \vec{v} \) and \( \overrightarrow{\mathrm{W}} \) is \( \sqrt{2} \), then the value of \( |3 \vec{u}+5 \overrightarrow{\mathrm{v}}| \) is
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live