Let \( S_{1}, S_{2}, S_{3}, \ldots \) be squares such that the length of the side of \( S_{n} \) is equal to the length of the diagonal of \( S_{n+1} \). Match the items in column I with those in column II, if the length of the side of \( S_{1} \) is equal to 10 units.
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{2}{|c|}{ Column - I } & \multicolumn{2}{c|}{ Column - II } \\
\hline (A) & \begin{tabular}{l}
Length of the side of \( S_{3} \) \\
is
\end{tabular} & (p) & 7 \\
\hline (B) & \begin{tabular}{l}
Length of the diagonal \\
of \( S_{4} \)
\end{tabular} & (q) & 5 \\
\hline (C) & \begin{tabular}{l}
The area of \( S_{n} \) is less \\
than l if \( n \) is greater than
\end{tabular} & (r) & 6 \\
\hline (D) & \begin{tabular}{l}
Sum of the areas of the \\
squares is
\end{tabular} & (s) & 200 \\
\hline \multicolumn{2}{|l}{} & (t) & \( \frac{10 \sqrt{2}}{(\sqrt{2}-1)} \) \\
\hline
\end{tabular}
(1) (A) \( \rightarrow \) (q), (B) \( \rightarrow \) (q), (C) \( \rightarrow \) (p), (D) \( \rightarrow \) (s)
(2) (A) \( \rightarrow \) (r), (B) \( \rightarrow \) (p), (C) \( \rightarrow \) (s), (D) \( \rightarrow \) (q)
Activate Windows
(3) (A) \( \rightarrow \) (q), (B) \( \rightarrow \) (r), (C) \( \rightarrow \) (s), (D) \( \rightarrow \) (p)
Go to Settings to activate Windows.
(4) (A) \( \rightarrow \) (p), (B) \( \rightarrow \) (p), (C) \( \rightarrow \) (r), (D) \( \rightarrow \) (q)