Match the items in column I with those in column II.
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{2}{|c|}{ Column - I } & \multicolumn{2}{c|}{ Column - II } \\
\hline (A) & \begin{tabular}{l}
If the \( p^{\text {th }}, q^{\text {th }} \) and \( r^{\text {th }} \) terms of an \( A P \) \\
are \( a, b, c \) respectively, then the \\
value of \( a(q-r)+b(r-p)+c(p- \) \\
\( q) \) is
\end{tabular} & (p) & 15 \\
\hline (B) & \begin{tabular}{l}
The sum of \( \mathrm{m} \) terms of an \( A P \) is \( \mathrm{n} \) \\
and the sum of \( \mathrm{n} \) terms is \( m \), then \\
the \\
\( (m+n) \) terms] is
\end{tabular} & (q) & 27 \\
\hline (C) & \begin{tabular}{l}
If five arithmetic means are \\
inserted between 2 and 4, then the \\
sum of the five means are
\end{tabular} & (r) & \( -(m+n) \) \\
\hline (D) & \begin{tabular}{l}
In an \( A P \), if the sum of \( n \) terms is \\
\( 3 n^{2} \) and the sum of \( \mathrm{m} \) terms is \( 3 m^{2} \) \\
\( (m \neq n) \) then, the sum of the first \\
three terms is
\end{tabular} & (s) & 0 \\
\hline
\end{tabular}
(1) (A) \( \rightarrow \) (s), (B) \( \rightarrow \) (p), (C) \( \rightarrow \) (p), (D) \( \rightarrow \) (r)
(2) (A) \( \rightarrow \) (q), (B) \( \rightarrow \) (r), (C) \( \rightarrow \) (q), (D) \( \rightarrow \) (p)
(3) (A) \( \rightarrow \) (s), (B) \( \rightarrow \) (r), (C) \( \rightarrow \) (p), (D) \( \rightarrow \) (q)
(4) (A) \( \rightarrow \) (r), (B) \( \rightarrow \) (s), (C) \( \mathrm{e}^{\leftrightarrow}(\mathrm{p}),(\mathrm{(D}) \rightarrow(\mathrm{q}) \)