Match the items in column I with those in column II. \begin{tabular}{|l|l|c|c|} \hline \multicol....

Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=Qw_irhf-_VE



Duration: 8:47
0 views
0


Match the items in column I with those in column II.
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{2}{|c|}{ Column - I } & \multicolumn{2}{c|}{ Column - II } \\
\hline (A) & \begin{tabular}{l}
If the \( p^{\text {th }}, q^{\text {th }} \) and \( r^{\text {th }} \) terms of an \( A P \) \\
are \( a, b, c \) respectively, then the \\
value of \( a(q-r)+b(r-p)+c(p- \) \\
\( q) \) is
\end{tabular} & (p) & 15 \\
\hline (B) & \begin{tabular}{l}
The sum of \( \mathrm{m} \) terms of an \( A P \) is \( \mathrm{n} \) \\
and the sum of \( \mathrm{n} \) terms is \( m \), then \\
the \\
\( (m+n) \) terms] is
\end{tabular} & (q) & 27 \\
\hline (C) & \begin{tabular}{l}
If five arithmetic means are \\
inserted between 2 and 4, then the \\
sum of the five means are
\end{tabular} & (r) & \( -(m+n) \) \\
\hline (D) & \begin{tabular}{l}
In an \( A P \), if the sum of \( n \) terms is \\
\( 3 n^{2} \) and the sum of \( \mathrm{m} \) terms is \( 3 m^{2} \) \\
\( (m \neq n) \) then, the sum of the first \\
three terms is
\end{tabular} & (s) & 0 \\
\hline
\end{tabular}
(1) (A) \( \rightarrow \) (s), (B) \( \rightarrow \) (p), (C) \( \rightarrow \) (p), (D) \( \rightarrow \) (r)
(2) (A) \( \rightarrow \) (q), (B) \( \rightarrow \) (r), (C) \( \rightarrow \) (q), (D) \( \rightarrow \) (p)
(3) (A) \( \rightarrow \) (s), (B) \( \rightarrow \) (r), (C) \( \rightarrow \) (p), (D) \( \rightarrow \) (q)
(4) (A) \( \rightarrow \) (r), (B) \( \rightarrow \) (s), (C) \( \mathrm{e}^{\leftrightarrow}(\mathrm{p}),(\mathrm{(D}) \rightarrow(\mathrm{q}) \)


📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2024-01-23Point \( (0, \beta) \) lies on or inside the triangle formed by the lines \( y=0, x+y=8 \) and \....
2024-01-23If the lines \( x+y+1=0 ; 4 x+3 y+4=0 \) and \( x+\alpha y \) \( +\beta=0 \), where \( \alpha^{2....
2024-01-23If \( P=\left(\frac{1}{x_{p}}, p\right) ; Q=\left(\frac{1}{x_{q}}, q\right) ; R=\left(\frac{1}{x....
2024-01-23If \( L \) is the line whose equation is \( a x+b y=c \). Let \( M \) be the reflection of \( L ....
2024-01-23Let \( m \) be a positive integer and let the lines \( 13 x+11 y=700 \) and \( y=m x-1 \) inters....
2024-01-23If \( S \) sum to 50 terms of \( 1+(2)(3)+4+(5)(6)+7+ \) (8)(9) + .... then \( S / 9935 \)....
2024-01-23If the sum of the slopes of the lines given by \( x^{2}-2 c x y \) \( -7 y^{2}=0 \) is four time....
2024-01-23Let \( a_{1}=\frac{1}{2}, a_{k+1}=a_{k}^{2}+a_{k} \forall k \geq 1 \) and \[ x_{n}=\frac{1}{a_{1....
2024-01-23Let \( S_{1}, S_{2}, S_{3}, \ldots \) be squares such that the length of the side of \( S_{n} \)....
2024-01-23The ratio in which the line segment joining \( (2,-3) \) and \( (5,6) \) is divided by the \( x ....
2024-01-23Match the items in column I with those in column II. \begin{tabular}{|l|l|c|c|} \hline \multicol....
2024-01-23The sum of \( 12\left(\frac{1}{1.3 .5}+\frac{1}{3.5 .7}+\frac{1}{5.7 .9}+\ldots\right. \). upto ....
2024-01-23Let \( x \) and \( y \) be real numbers such that \( x, x+2 y \) and \( 2 x+y \) are in \( A P \....
2024-01-23Which of the following statement(s) is (are) true?....
2024-01-23Match the items in column I with those in column II. \begin{tabular}{|l|l|l|l|} \hline \multicol....
2024-01-23Sum to \( n \) terms of the series \( \frac{1^{4}}{1 \cdot 3}+\frac{2^{4}}{3 \cdot 5}+\frac{3^{4....
2024-01-23Three number \( l, m \) and \( \mathrm{n} \) are in GP. The \( l^{\text {th }}, m^{\text {th }} ....
2024-01-23Let \( x \) and \( y \) be real numbers such that \( x, x+2 y \) and \( 2 x+y \) are in \( A P \....
2024-01-23Let \( x \) and \( y \) be real numbers such that \( x, x+2 y \) and \( 2 x+y \) are in \( A P \....
2024-01-23The numbers \( a, b, c \) and \( A, B, C \) are in \( A P \). The common difference of the secon....
2024-01-23The ratio of the sum of the cubes of an infinitely decreasing GP to the sum of its squares is \(....