Let the volume of a parallelopiped whose
\( \mathrm{P} \) coterminous edges are given by \( \overrightarrow{\mathrm{u}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\lambda \hat{\mathrm{k}} \),
W \( \overrightarrow{\mathrm{V}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}} \) and
\( \overrightarrow{\mathrm{W}}=2 \hat{i}+\hat{j}+\hat{k} \) be \( 1 \mathrm{cu} \). Unit. If \( \theta \) be the angle between the edges \( \overrightarrow{\mathrm{u}} \) and \( \overrightarrow{\mathrm{W}} \), then \( \cos \theta \) can be:
(1) \( \frac{7}{6 \sqrt{3}} \)
(2) \( \frac{7}{6 \sqrt{6}} \)
(3) \( \frac{5}{7} \)
(4) \( \frac{5}{3 \sqrt{3}} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live