Let there be a spherically symmetric charge distribution with charge density varying as \( \rho(...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=D8OH58h_UC8
Let there be a spherically symmetric charge distribution with charge density varying as \( \rho(r)=\rho_{0}\left(\frac{5}{4}-\frac{r}{R}\right) \) upto \( r=R \), and \( \rho(r)=0 \) for \( r>R \), where \( r \) is the distance from the origin. The electric field at a distance \( r(r<R) \) from the origin is given by
(a) \( \frac{\rho_{0} r}{4 \varepsilon_{0}}\left(\frac{5}{4}-\frac{r}{R}\right) \)
(b) \( \frac{4 \pi \rho_{0} r}{3 \varepsilon_{0}}\left(\frac{5}{3}-\frac{r}{R}\right) \)
(c) \( \frac{\rho_{0} r}{4 \varepsilon_{0}}\left(\frac{5}{3}-\frac{r}{R}\right) \)
(d) \( \frac{4 \rho_{0} r}{3 \varepsilon_{0}}\left(\frac{5}{4}-\frac{r}{R}\right) \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live