Let \( \vec{a}=\hat{j}-\hat{k} \) and \( \vec{c}=\hat{i}-\hat{j}-\hat{k} \). Then the vector \( ...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=wcfWgrDo8ZY
Let \( \vec{a}=\hat{j}-\hat{k} \) and \( \vec{c}=\hat{i}-\hat{j}-\hat{k} \). Then the vector \( \vec{b} \) satisfying \( \vec{a} \times \vec{b}+\vec{c}=0 \) and \( \vec{a} \cdot \vec{b}=3 \) is
(A) \( \hat{i}+\hat{j}-2 \hat{k} \)
(B) \( -\hat{i}+\hat{j}-2 \hat{k} \)
(C) \( 2 \hat{i}-\hat{j}+2 \hat{k} \)
(D) \( \hat{i}-\hat{j}-2 \hat{k} \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live