Let \( z_{1} \) and \( z_{2} \) be two distinct complex numbers and let \( z=(1-t) z_{1}+t z_{2}...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=wAEUlVB1hzU
Let \( z_{1} \) and \( z_{2} \) be two distinct complex numbers and let \( z=(1-t) z_{1}+t z_{2} \) for some real number \( t \) with \( 0t1 \). If
P \( \arg (w) \) denotes the principal argument of a non-zero
W complex number \( w \), then
(2010)
(a) \( \left|z-z_{1}\right|+\left|z-z_{2}\right|=\left|z_{1}-z_{2}\right| \) (b) \( \arg \left(z-z_{1}\right)=\arg \left(z-z_{2}\right) \)
(c) \( \left|\begin{array}{cc}z-z_{1} & \bar{z}-\bar{z}_{1} \\ z_{2}-z_{1} & \bar{z}_{2}-\bar{z}_{1}\end{array}\right|=0 \)
(d) \( \arg \left(z-z_{1}\right)=\arg \left(z_{2}-z_{1}\right) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live