\( \lim _{x \rightarrow 1+0} \frac{\int_{1}^{x}|t-1| d t}{\sin (x-1...
\( \lim _{x \rightarrow 1+0} \frac{\int_{1}^{x}|t-1| d t}{\sin (x-1)} \) is equal to
\( \mathrm{P} \)
W
(a) 0
(b) 1
(c) -1
(d) none of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2023-03-21 | If \( f \) is an even function defined on the interval \( (-5,5) \)... |
2023-03-21 | If \( \alpha \) is a repeated root of \( a x^{2}+b x+c=0 \) then \(... |
2023-03-21 | If \( f(x)=|x-1|-[x]= \) the greatest integer less than or equal to... |
2023-03-21 | Let \( f(x)=1+\frac{2 x}{a}, 0 \leq x1 \)
P
W
\[
=\mathrm{ax}, 1 \l... |
2023-03-21 | Let \( f(x)=\sin x, x \neq n \pi \quad \) and \( \quad g(x)=x^{2}+1... |
2023-03-21 | If \( f(x) \) is continuous and \( f\left(\frac{9}{2}\right)=\frac{... |
2023-03-21 | If [.] denotes the greatest integer function then \( \lim _{n \righ... |
2023-03-21 | If \( f(x) \) continuous in \( [0,1] \) and \( f\left(\frac{1}{3}\r... |
2023-03-21 | If \( e^{x}+e^{f(x)}= \) e then for \( f(x) \)
\( \mathrm{P} \)
(a)... |
2023-03-21 | \( \lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \cos ^{2} d t}{x ... |
2023-03-21 | \( \lim _{x \rightarrow 1+0} \frac{\int_{1}^{x}|t-1| d t}{\sin (x-1... |
2023-03-21 | If \( f(x) \) and \( g(x) \) are two functions of \( x \) such that... |
2023-03-21 | Let \( f(x)=\sec ^{-1}\left[1+\cos ^{2} x\right] \) where [.] denot... |
2023-03-21 | Let \( f(x)=[x]= \) the greatest integer less than or equal to \( x... |
2023-03-21 | If \( f(x)=\sin ^{-1}(\sin x) \) then
P
W
(a) \( f(x)=\pi-x, 0 \leq... |
2023-03-21 | The domain of the real-valued function \( f(x)=\log _{e}\left|\log ... |
2023-03-21 | The domain of the function \( f(x)=\sin ^{-1}(x+[x]) \), where [.] ... |
2023-03-21 | Which of the following is an even function?
P
Here [.]denotes the g... |
2023-03-21 | Let \( f(1)=1 \) and \( f(n)=2 \sum_{r=1}^{n-1} f(r) \). Then \( \s... |
2023-03-21 | The domain of the function \( f(x)=\sqrt{x^{2}-[x]^{2}} \), where \... |
2023-03-21 | If \( a f(x+1)+b f\left(\frac{1}{x+1}\right)=x, x \neq-1, a \neq b ... |