Match the column I with column II. \begin{tabular}{|l|l|l|l|} \hline \multicolumn{2}{|c|}{ Colum....
Match the column I with column II.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
When a body \\
does work against \\
friction, its \\
kinetic energy
\end{tabular} & (p) & \begin{tabular}{l}
Independent of \\
time
\end{tabular} \\
\hline (B) & \begin{tabular}{l}
Work done by a \\
body is
\end{tabular} & (q) & Time \\
\hline (C) & \begin{tabular}{l}
Power of a body \\
varies inversely \\
as
\end{tabular} & (r) & \begin{tabular}{l}
Force must be \\
conservative
\end{tabular} \\
\hline (D) & \begin{tabular}{l}
When work done \\
over a closed path \\
is zero
\end{tabular} & (s) & Decreases \\
\hline
\end{tabular}
(1) \( \mathrm{A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{r} ; \mathrm{D} \rightarrow \mathrm{p} \)
(2) \( \mathrm{A} \rightarrow \mathrm{r} ; \mathrm{B} \rightarrow \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{s} \)
(3) \( \mathrm{A} \rightarrow \mathrm{p} ; \mathrm{B} \rightarrow \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{s} \)
(4) \( \mathrm{A} \rightarrow \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{p} ; \mathrm{C} \rightarrow \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{r} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live