Match the compound statement in List-I with their symbols in List -II
\begin{tabular}{|l|l|l|l|}....
Match the compound statement in List-I with their symbols in List -II
\begin{tabular}{|l|l|l|l|}
\hline & List -I & & List -II \\
\hline \( \mathbf{( A )} \) & Conjunction & \( \mathbf{( P )} \) & \( \leftrightarrow \) \\
\hline \( \mathbf{( B )} \) & Disjunction & \( \mathbf{( Q )} \) & \( \wedge \) \\
\hline \( \mathbf{( C )} \) & \begin{tabular}{l}
Conditional \\
Statements
\end{tabular} & \( \mathbf{( R )} \) & \( \vee \) \\
\hline \( \mathbf{( D )} \) & \begin{tabular}{l}
Biconditional \\
statements
\end{tabular} & \( \mathbf{( S )} \) & \( \rightarrow \) \\
\hline
\end{tabular}
\( \mathrm{P} \)
A
(1) \( \mathrm{Q} \)
(2) \( \mathrm{R} \)
(3) \( \mathrm{R} \)
(4) \( \mathrm{Q} \)
B
\( \mathrm{R} \)
Q
Q
\( \mathrm{R} \)
C
P
S
\( P \)
S
D
S
\( P \)
S
P
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-21 | Match the items of Column I with those of Column
II.
\begin{tabular}{|l|l|l|l|}
\hline \multicol.... |
2024-01-21 | Which of following is true?.... |
2024-01-21 | The mean for the following data:
\( 8,5,9,13,5,12,6,14 \) is
(1) 8
(2) 9
(3) 10
(4) 11
Go to Set.... |
2024-01-21 | Number of 'True' values in the truth table of \( \sim p \vee \sim q \) is (are).... |
2024-01-21 | Number of 'True' values in the truth table of
\( p \wedge(q \wedge r) \) is (are).... |
2024-01-21 | Number of 'False' values in the truth table of \( (p \vee q) \wedge \sim p \) is (are).... |
2024-01-21 | Consider the statement 'If two angles are congruent, then they have the same measure' then
The i.... |
2024-01-21 | Statements: If ' \( q \) ' then ' \( p \) ' \( (q \rightarrow p) \) then match the following lis.... |
2024-01-21 | Which of the following is (are) true?.... |
2024-01-21 | If ' \( p \) ' is any statement and ' \( t \) ' represent a 'tautology', ' \( f \) ' represents .... |
2024-01-21 | Match the compound statement in List-I with their symbols in List -II
\begin{tabular}{|l|l|l|l|}.... |
2024-01-21 | Consider the statement 'If two angles are congruent, then they have the same measure' then
The c.... |
2024-01-21 | Which of the following is (are) true?.... |
2024-01-21 | The contrapositive of \( (p \vee q) \rightarrow r \) is.... |
2024-01-21 | If \( y \sqrt{1-x^{2}}=k-x \sqrt{1-y^{2}} \) and \( y\left(\frac{1}{2}\right)=-\frac{1}{4} \), t.... |
2024-01-21 | \( \sim(p \vee(\sim p \vee q)) \) is equal to.... |
2024-01-21 | \( \sim(p \leftrightarrow q) \) is logically equivalent to.... |
2024-01-21 | The inverse of the proposition \( (p \wedge \sim q) \rightarrow r \) is.... |
2024-01-21 | If \( p, q \), and \( r \) are simple propositions such that \( (p \wedge q) \wedge(q \wedge r) .... |
2024-01-21 | The negation of \( q \vee \sim(p \wedge r) \) is.... |
2024-01-21 | Statement: Everyone in England speaks English. which of following is not a negation of the above.... |