Match the following
\begin{tabular}{|c|c|c|c|}
\hline & List -I & & List -II \\
\hline (A) & \begin{tabular}{l}
The smallest integer greater \\
than \( \frac{1}{\log _{3} \pi}+\frac{1}{\log _{4} \pi} \) is
\end{tabular} & \( (\mathrm{P}) \) & 10 \\
\hline (B) & \begin{tabular}{l}
Let \( 3^{a}=4,4^{b}=5,5^{c}=6 \), \\
\( 6^{d}=7,7^{e}=8 \), and \( 8^{f}=9 \) \\
Then the value of the \\
product \( (a b c d e f) \) is
\end{tabular} & (Q) & 3 \\
\hline (C) & \begin{tabular}{l}
Characteristic of the \\
logarithm of 2008 to the \\
base 2 is
\end{tabular} & (R) & 1 \\
\hline (D) & \begin{tabular}{l}
If \( \log _{2}\left(\log _{2}\left(\log _{3} x\right)\right)=\log _{2} \) \\
\( \left(\log _{3}\left(\log _{2} y\right)\right)=0 \), then the \\
value of \( (x-y) \) is
\end{tabular} & (S) & 2 \\
\hline
\end{tabular}
\( \mathrm{P} \)
W
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & P & Q & R & S \\
(2) & R & P & S & Q \\
(3) & P & S & R & Q \\
(4) & Q & S & P & R
\end{tabular}