Match the following columns
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline A. & \begin{tabular}{l}
7 identical white balls and 3 \\
identical black balls are \\
placed in a row at random. \\
The probability that no two \\
black balls are adjacent is
\end{tabular} & \( \frac{8}{11} \) \\
\hline B. & \begin{tabular}{l}
4 gentlemen and 4 ladies take \\
seats at random round a table. \\
The probability that they are \\
sitting alternately is
\end{tabular} & Q. & \( \frac{1}{7} \) \\
\hline C. & \begin{tabular}{l}
10 different books and 2 \\
different pens are given to 3 \\
boys, so that each gets equal \\
number of things. The \\
probability that the same boy \\
does not receive both the \\
pens, is
\end{tabular} & R. & \( \frac{7}{15} \) \\
\hline D. & \begin{tabular}{l}
The probability that an \\
ordinary year has 53 Sundays \\
is
\end{tabular} & S. & \( \frac{1}{35} \) \\
\hline & & T. & \( \frac{3}{16} \) \\
\hline
\end{tabular}
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & \( \mathrm{R} \) & \( \mathrm{S} \) & \( \mathrm{P} \) & \( \mathrm{Q} \) \\
(2) & \( \mathrm{R} \) & \( \mathrm{Q} \) & \( \mathrm{S} \) & \( \mathrm{P} \) \\
(3) & \( \mathrm{P} \) & \( \mathrm{Q} \) & \( \mathrm{R} \) & \( \mathrm{T} \) \\
(4) & \( \mathrm{T} \) & \( \mathrm{R} \) & \( \mathrm{P} \) & \( \mathrm{Q} \)
\end{tabular}
\( \mathrm{P} \)
W
.