Match the following columns: \begin{tabular}{|l|l|l|l|} \hline \multicolumn{3}{|c|}{ Column-I } ....
Match the following columns:
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
The bisector of the acute \\
angle formed between the \\
lines \( 4 x-3 y+7=0 \) and \( 3 x \) \\
\( -4 y+14=0 \) has the \\
equation
\end{tabular} & \begin{tabular}{l}
\( x-5 y+ \) \\
\( 4=0 \)
\end{tabular} \\
\hline (B) & \begin{tabular}{l}
If a vertex of an equilateral \\
triangle is the origin and the \\
side opposite to it has the \\
equation \( x+y=1 \), then the \\
orthocentre of the triangle is
\end{tabular} & \begin{tabular}{l}
\( x-y+3 \) \\
\( =0 \)
\end{tabular} \\
\hline (C) & \begin{tabular}{l}
In a triangle ABC the \\
equation of bisector of \\
angle B is \( y=x \). If \( \mathrm{A}=(2 \), \\
6) and B \( =(1,1) \) the \\
equation of side BC. is
\end{tabular} & \( \left(\frac{1}{3}, \frac{1}{3}\right) \) \\
\hline (D) & \begin{tabular}{l}
The base vertices of an \\
isosceles triangle PQR are \\
Q (1, 3) and R \( (-2,7) \). The \\
vertex P can be
\end{tabular} & \( \left(\frac{5}{6}, 6\right) \) \\
\hline
\end{tabular}
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & Q & R & P & S \\
(2) & P & R & Q & S \\
(3) & S & Q & R & P \\
(4) & P & S & R & Q
\end{tabular}
P
W
(4)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live