Match the statements in Column-I with those in Column-II.
\( \mathrm{P} \)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ Column-I } & \multicolumn{2}{|r|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
The set of points \\
\( z \) satisfying \\
\( |z-i| z||=\mid z+i \) \\
\( |z| \mid \) is contained \\
in or equal to
\end{tabular} & (P) & \begin{tabular}{l}
An ellipse with \\
eccentricity \( \frac{4}{5} \)
\end{tabular} \\
\hline (B) & \begin{tabular}{l}
The set of points \\
\( z \) satisfying \\
\( |z+4|+|z-4|= \) \\
10 is contained \\
in or equal to
\end{tabular} & (Q) & \begin{tabular}{l}
The set of points \( z \) \\
satisfying \\
\( \operatorname{Im}(z)=0 \)
\end{tabular} \\
\hline (C) & \begin{tabular}{l}
If \( |w|=2 \), then \\
the set of points \\
\( z=w-\frac{1}{w} \) is \\
contained in or \\
equal to
\end{tabular} & (R) & \begin{tabular}{l}
The set of points \( z \) \\
satisfying \\
\( |\operatorname{Im} z| \leq 1 \)
\end{tabular} \\
\hline (D) & \begin{tabular}{l}
If \( |w|=1 \), then \\
the set of points \\
\( z=w+\frac{1}{w} \) is \\
contained in or \\
equal to
\end{tabular} & (S) & \begin{tabular}{l}
The set of points \( z \) \\
satisfying \\
\( |\operatorname{Re} z| \leq 2 \)
\end{tabular} \\
\hline & & (T) & \begin{tabular}{l}
The set of points \( z \) \\
satisfying \\
\( |z| \leq 3 \)
\end{tabular} \\
\hline
\end{tabular}
(1) A-P; B-Q,R; C-P,S,T; D-Q,R,ST
(2) A-Q,R,S,T; B-P; C-P,S,T; D-Q,R
(3) A-P,S,T; B-P; C-Q,R; D-Q,R,ST
(4) A-Q,R; B-P; C-P,S,T; D-Q,R,ST
Counter-Strike: Source Statistics For PW Solutions
There are 30,471 views in 1,724 videos for Counter-Strike: Source. His channel uploaded over 5 days worth of Counter-Strike: Source videos, less than 0.53% of the total video content that PW Solutions has uploaded to YouTube.