Multi Type Mean Field Reinforcement Learning | AISC

Published on ● Video Link: https://www.youtube.com/watch?v=xMHOsRq_qT0



Duration: 58:34
934 views
17


For slides and more information on the paper, visit https://ai.science/e/multi-type-mean-field-reinforcement-learning--ZPQxNPfeGM02aiyTqViE

Discussion lead: Sriram Ganapathi Subramanian, Matthew Taylor

This paper presents scaling up RL to hundreds or thousands of agents using a "mean field" approximation. This has implications for modelling really large systems, like the stock market, as well as controlling large multi-agent systems.

Abstract

Mean field theory provides an effective way of scaling multiagent reinforcement learning algorithms to environments with many agents that can be abstracted by a virtual mean agent. In this paper, we extend mean field multiagent algorithms to multiple types. The types enable the relaxation of a core assumption in mean field games, which is that all agents in the environment are playing almost similar strategies and have the same goal. We conduct experiments on three different testbeds for the field of many agent reinforcement learning, based on the standard MAgents framework. We consider two different kinds of mean field games: a) Games where agents belong to predefined types that are known a priori and b) Games where the type of each agent is unknown and therefore must be learned based on observations. We introduce new algorithms for each type of game and demonstrate their superior performance over state of the art algorithms that assume that all agents belong to the same type and other baseline algorithms in the MAgent framework.




Other Videos By LLMs Explained - Aggregate Intellect - AI.SCIENCE


2020-05-21Learning the Graphical Structure of Electronic Health Records with Graph Convolutional Transformer
2020-05-20Reinforcement Learning for Batch-to-Batch Bioprocess Optimisation | AISC
2020-05-20Leaf Doctor: Plant Disease Detection Using Image Classification | Deep Learning Workshop Capstone
2020-05-20News ScanNER: Entity Tagging in News Headlines | Deep Learning Workshop Capstone
2020-05-19New methods for identifying latent manifold structure from neural data | ASIC
2020-05-19Using unsupervised machine learning to uncover hidden scientific knowledge | AISC
2020-05-15FineGym: A Hierarchical Video Dataset for Fine-grained Action Understanding
2020-05-14A Literature Review on ML in Climate Science | AISC
2020-05-13[cnvrg.io] Operating System for Machine Learning | AISC
2020-05-12Tobias Pfaff (DeepMind): Learning to Simulate Complex Physics with Graph Networks
2020-05-07Multi Type Mean Field Reinforcement Learning | AISC
2020-05-07Proving the Lottery Ticket Hypothesis: Pruning is All You Need | AISC Livestream with the Author
2020-05-06Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthe
2020-05-06A Literature Review on Deep Learning in Finance | AISC
2020-05-02COVID19 and AI: Ethics and Data Rights Panel | AISC & NYAI
2020-04-30A Literature Review on Interpretability for Machine Learning | AISC
2020-04-29A Literature Review on ML in Health Care : Introducing new AISC Stream | AISC
2020-04-29A Literature Review on ML in Neuroscience - Introducing new AISC Stream | AISC
2020-04-28Model Selection for Optimal Prediction in Statistical Learning (Part 1: 7 Wheels of Stat Learning)
2020-04-28A Literature Review on Machine Learning in Materials Science | AISC
2020-04-23SELFIES: A 100% robust representation of semantically constrained Graphs, for deep generative models