Number of integral values of \( b \) for which the equation
P \( \f...
Number of integral values of \( b \) for which the equation
P \( \frac{x^{3}}{3}-x=b \) has three distinct solutions is
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2023-03-21 | Let \( f(x)=30-2 x-x^{3} \), then the number of positive integral
\... |
2023-03-21 | The least area of a circle circumscribing any right triangle
P of a... |
2023-03-21 | The function \( f(x)=\sqrt{\left(a x^{3}+b x^{2}+c x+d\right)} \) h... |
2023-03-21 | Let \( f(x)=\left\{\begin{array}{ll}\left|x^{2}-3 x\right|+a, & 0 \... |
2023-03-21 | The number of nonzero integral values of \( a \) for which the
P fu... |
2023-03-21 | Let \( f(x)=\left\{\begin{array}{l}x^{3 / 5}, \text { if } x \leq 1... |
2023-03-21 | A rectangle with one side lying along the \( x \)-axis is to be
P i... |
2023-03-21 | Consider \( P(x) \) to be a polynomial of degree 5 having
\( \mathr... |
2023-03-21 | For a cubic function \( y=f(x), f^{\prime \prime}(x)=4 x \) at each... |
2023-03-21 | Match the following lists and then choose the correct code. |
2023-03-21 | Number of integral values of \( b \) for which the equation
P \( \f... |
2023-03-21 | Let \( f(x) \) be a cubic polynomial which has local maximum at \( ... |
2023-03-21 | If \( m \) is the minimum value of \( f(x, y)=x^{2}-4 x+y^{2}+6 y \... |
2023-03-21 | From a given solid cone of height \( H \), another inverted cone is... |
2023-03-21 | Let \( h(x)=f(x)-a(f(x))^{2}+a(f(x))^{3} \) for every real number \... |
2023-03-21 | Match the following lists:
\begin{tabular}{|c|l|}
\hline List \( \m... |
2023-03-21 | If \( \alpha \) is an integer satisfying \( |\alpha| \leq 4-|[x]| \... |
2023-03-21 | Let \( f(x)=(x-1)^{m}(2-x)^{n} ; m, n \in N \) and \( m, n2 \). The... |
2023-03-21 | Consider function \( f(x)=\left\{\begin{array}{ll}-x^{2}+4 x+a, & x... |
2023-03-21 | Consider function \( f(x)=\left\{\begin{array}{ll}-x^{2}+4 x+a, & x... |
2023-03-21 | The number of points where \( f(x)=\operatorname{sgn}\left(x^{2}-3 ... |