\( P \) is a point on the hyperbola \( \frac{x^{2}}{a^{2}}-\frac{y^...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=Ac4yHOUxLW8
\( P \) is a point on the hyperbola \( \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, N \) is the foot of the perpendicular from \( P \) on the transverse
\( \mathrm{P} \) axis. The tangent to the hyperbola at \( P \) meets the transverse axis at \( \mathrm{T} \). If \( \mathrm{O} \) is the centre of the
W hyperbola, then OT. ON is equal to :
(A) \( \mathrm{e}^{2} \)
(B) \( a^{2} \)
(C) \( b^{2} \)
\( (\mathrm{D}) \mathrm{b}^{2} / \mathrm{a}^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw