\( P \) is a variable point on the ellipse \( \frac{x^{2}}{a^{2}}+\...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=2ByTky6XWII
\( P \) is a variable point on the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2 \) whose foci are \( F_{1} \) and \( F_{2} \). The maximum area (in
\( \mathrm{P} \) unit) \( { }^{2} \) of the \( \triangle P F F^{\prime} \) is
W.
(a) \( 2 b \sqrt{a^{2}-b^{2}} \)
(b) \( \sqrt{2} b \sqrt{a^{2}-b^{2}} \)
(c) \( b \sqrt{a^{2}-b^{2}} \)
(d) \( 2 a \sqrt{a^{2}-b^{2}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw