Panel: Generalization in reinforcement learning

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=xGnjKLxedSk



Duration: 46:02
457 views
7


Speakers:
Mingfei Sun, Researcher, Microsoft Research Cambridge
Roberta Raileanu, PhD Student, NYU
Wendelin Böhmer, Assistant Professor, Delft University of Technology
Harm van Seijen, Principal Research Manager, Microsoft Research Montreal
Cheng Zhang, Principal Researcher, Microsoft Research Cambridge

The ability for a reinforcement learning (RL) policy to generalize is a key requirement for the broad application of RL algorithms. This generalization ability is also essential to the future of RL—both in theory and in practice. Join Microsoft researchers Harm van Seijen, Cheng Zhang, and Mingfei Sun, along with Dr. Wendelin Boehmer from Delft University of Technology and Dr. Roberta Raileanu from New York University, as they examine how agents struggle to transfer learned policies to new environments or tasks and explore why generalization remains challenging for state-of-the-art deep RL algorithms. In addition, they will discuss open questions about the right way to think about generalization in RL, the right way to formalize the problem, and the most important tasks to be considered for generalization. Together, you will explore the importance of studying generalization in RL, the recent research progress in generalization in RL, the open challenges, and the potential research directions in this area.

Learn more about the 2021 Microsoft Research Summit: https://Aka.ms/researchsummit




Other Videos By Microsoft Research


2022-01-24Research talk: Domain-specific pretraining for vertical search
2022-01-24Research talk: Is phrase retrieval all we need?
2022-01-24Live Q&A and Closing remarks: New future of work
2022-01-24Research talk: DeepXML: A deep extreme classification framework for recommending millions of items
2022-01-24Talk series: Developer productivity
2022-01-24Practical tips for productivity & wellbeing: Focusing without getting exhausted
2022-01-24Practical tips for productivity & wellbeing: Transitioning across the work-life boundary
2022-01-24Research talk: Attentive knowledge-aware graph neural networks for recommendation
2022-01-24Practical tips for productivity & wellbeing: Lessons from COVID-19 around time management
2022-01-24Tutorial, Research talk, and Q&A: ElectionGuard: Enabling voters to verify election integrity
2022-01-24Panel: Generalization in reinforcement learning
2022-01-20Unsupervised Speech Enhancement
2022-01-20Developing a Brain-Computer Interface Based on Visual Imagery
2022-01-04Panel: Theory Research in Big Data Era
2022-01-04Talk: Sequential Search Problems Beyond The Pandora Box Setting
2022-01-04Recap video of 2021 MSR Asia Theory Workshop (Short version)
2022-01-04Talk: The implicit bias of optimization algorithms in deep learning
2022-01-04Talk: Coresets for Clustering with Missing Values
2022-01-04MSR Asia Theory Center Introduction
2022-01-04Inauguration Ceremony of MSR Asia Theory Center Opening Speech from Tie-Yan Liu
2022-01-04Talk: Batch Online Learning and Decision



Tags:
reward-based learning
reinforcement learning
innovation in artificial environments
accelerate AI
microsoft research summit