Parameter Prediction for Unseen Deep Architectures (w/ First Author Boris Knyazev)

Parameter Prediction for Unseen Deep Architectures (w/ First Author Boris Knyazev)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=3HUK2UWzlFA



Duration: 48:07
15,488 views
0


#deeplearning #neuralarchitecturesearch #metalearning

Deep Neural Networks are usually trained from a given parameter initialization using SGD until convergence at a local optimum. This paper goes a different route: Given a novel network architecture for a known dataset, can we predict the final network parameters without ever training them? The authors build a Graph-Hypernetwork and train on a novel dataset of various DNN-architectures to predict high-performing weights. The results show that not only can the GHN predict weights with non-trivial performance, but it can also generalize beyond the distribution of training architectures to predict weights for networks that are much larger, deeper, or wider than ever seen in training.

OUTLINE:
0:00 - Intro & Overview
6:20 - DeepNets-1M Dataset
13:25 - How to train the Hypernetwork
17:30 - Recap on Graph Neural Networks
23:40 - Message Passing mirrors forward and backward propagation
25:20 - How to deal with different output shapes
28:45 - Differentiable Normalization
30:20 - Virtual Residual Edges
34:40 - Meta-Batching
37:00 - Experimental Results
42:00 - Fine-Tuning experiments
45:25 - Public reception of the paper

ERRATA:
- Boris' name is obviously Boris, not Bori
- At 36:05, Boris mentions that they train the first variant, yet on closer examination, we decided it's more like the second

Paper: https://arxiv.org/abs/2110.13100
Code: https://github.com/facebookresearch/ppuda

Abstract:
Deep learning has been successful in automating the design of features in machine learning pipelines. However, the algorithms optimizing neural network parameters remain largely hand-designed and computationally inefficient. We study if we can use deep learning to directly predict these parameters by exploiting the past knowledge of training other networks. We introduce a large-scale dataset of diverse computational graphs of neural architectures - DeepNets-1M - and use it to explore parameter prediction on CIFAR-10 and ImageNet. By leveraging advances in graph neural networks, we propose a hypernetwork that can predict performant parameters in a single forward pass taking a fraction of a second, even on a CPU. The proposed model achieves surprisingly good performance on unseen and diverse networks. For example, it is able to predict all 24 million parameters of a ResNet-50 achieving a 60% accuracy on CIFAR-10. On ImageNet, top-5 accuracy of some of our networks approaches 50%. Our task along with the model and results can potentially lead to a new, more computationally efficient paradigm of training networks. Our model also learns a strong representation of neural architectures enabling their analysis.

Authors: Boris Knyazev, Michal Drozdzal, Graham W. Taylor, Adriana Romero-Soriano

Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2022-01-05Full Self-Driving is HARD! Analyzing Elon Musk re: Tesla Autopilot on Lex Fridman's Podcast
2022-01-02Player of Games: All the games, one algorithm! (w/ author Martin Schmid)
2021-12-30ML News Live! (Dec 30, 2021) Anonymous user RIPS Tensorflw | AI prosecutors rising | Penny Challenge
2021-12-28GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
2021-12-27Machine Learning Holidays Live Stream
2021-12-26Machine Learning Holiday Live Stream
2021-12-24[ML News] AI learns to search the Internet | Drawings come to life | New ML journal launches
2021-12-21[ML News] DeepMind builds Gopher | Google builds GLaM | Suicide capsule uses AI to check access
2021-11-27Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions (Paper Explained)
2021-11-25Peer Review is still BROKEN! The NeurIPS 2021 Review Experiment (results are in)
2021-11-24Parameter Prediction for Unseen Deep Architectures (w/ First Author Boris Knyazev)
2021-11-20Learning Rate Grafting: Transferability of Optimizer Tuning (Machine Learning Research Paper Review)
2021-11-18[ML News] Cedille French Language Model | YOU Search Engine | AI Finds Profitable MEME TOKENS
2021-11-15Gradients are Not All You Need (Machine Learning Research Paper Explained)
2021-11-12[ML News] Microsoft combines Images & Text | Meta makes artificial skin | Russians replicate DALL-E
2021-11-10Autoregressive Diffusion Models (Machine Learning Research Paper Explained)
2021-11-05[ML News] Google introduces Pathways | OpenAI solves Math Problems | Meta goes First Person
2021-11-03EfficientZero: Mastering Atari Games with Limited Data (Machine Learning Research Paper Explained)
2021-10-31[YTalks] Siraj Raval - Stories about YouTube, Plagiarism, and the Dangers of Fame (Interview)
2021-10-29[ML News] NVIDIA GTC'21 | DeepMind buys MuJoCo | Google predicts spreadsheet formulas
2021-10-29[ML News GERMAN] NVIDIA GTC'21 | DeepMind kauft MuJoCo | Google Lernt Spreadsheet Formeln



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
neural architecture search
first author
boris knyazev
nas
metalearning
meta-learning
meta learning
hypernetwork
graph hypernetwork
ghn
ghn-1
ppuda
parameter prediction
predicting parameters of neural networks
initialization learning
virtual edges
meta-batching
facebook research
meta ai
facebook ai research
meta research
resnet
out of distribution